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Temperature fluctuations and anomalous scaling in low-Mach-number
compressible turbulent flow

Tov Elperin and Nathan Kleeorin
The Pearlstone Center for Aeronautical Engineering Studies, Department of Mechanical Engineering,
Ben-Gurion University of the Negev, Beer-Sheva 84105, P.O. Box 653, Israel

Igor Rogachevskii
Racah Institute of Physics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
(Received 25 October 1996; revised manuscript received 20 February 1997

Temperature fluctuations in a low-Mach-number compressible turbulent fluid flow are studied. It is demon-
strated that, due to compressibility and external pressure fluctuations, the anomalous scaling may occur in the
second moment of the temperature field. The cause of the anomalous behavior is a compressibility-induced
depletion of the turbulent diffusion of the second moment of the temperature. It is shown that temperature
fluctuations in compressible fluid flo@wvithout thermal instability can be excited only by external pressure
fluctuations. Experiments are suggested for the observation of the excitation of the temperature fluctuations.
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PACS numbes): 47.27—i

[. INTRODUCTION compressibility of a turbulent fluid floy10]. In the present
study we show that temperature fluctuations are excited in
Problems of intermittency and anomalous scalings foithe compressible turbulent fluid flow only if there are exter-

scalar and vector fields passively advected by a threedal fluctuations of pressure.

dimensional isotropic turbulent fluid flow have been the sub- Different behaviors can also be observed in the dynamics

ject of numerous investigations in the last yeésse, e.g., ©f the mean fields. In particular, compressibility results in the

Refs.[1-11]). The anomalous scaling means the deviation o11‘0rrr?ation of inhomogeneous spatial distributions of mean

the scaling exponents of the correlation function of a passiv@a'ticle number density due to the effects of turbulent bar-

scalar(vectoy field from their values obtained by the dimen- 0diffusion and turbulent thermal diffusidii2,13. Inhomo-
sional analysis. For incompressible turbulent flow, thedeneities of the mean temperature in compressible turbulent

anomalous scalings for a scalar field can occur only for :Elcdtug?ivc\)lnga(;‘ bfe;glrjmei 22\% é?sé:‘:sptrhe:'iggi &L:ﬁﬁgil
fourth-order correlation function, while for the vector field ; S Ol pres av ) N

. . mal instability[ 14] is not excited. Excitation of temperature
the anomalous scalings appear in the second moment.

E ol £ 0) turbulent fluid f ith | fluctuations and the formation of inhomogeneities of the
or compressibleX - v=+0) turbulent fluid flow with low mean temperature in a compressible turbulent fluid flow are

Mach numbers, the situation is quite different. In the present, seq 1y the work performed by external pressure. On the
study it is shown that the compressibility of a turbulent fluid 5iher hand, excitation of fluctuations and formation of inho-

flow and external pressure fluctuations may result in the aPmogeneities of the mean number density of particles ad-
pearance of anomalous scaling in the second moment of thgscted by a compressible turbulent flow do not change the

temperature field. thermal energy of the system.
Note that in incompressible turbulent fluid flow, equations
for temperature field and the number density of noninertial Il. GOVERNING EQUATIONS
particles (or gaseous admixturesoincide. On the other
hand, in compressibleW-v#0) turbulent fluid flows with Evolution of the temperature fiel@(t,r) in a compress-

low Mach numbers, these equations are different. Indeed, thgle turbulent fluid flow is determined by the equation
equation for the number density has the form of a conserva-
tion law of the total number of particles. On the other hand,
the equation for the temperature field does not have the form
of a conservation law.

This results in different behaviors of particle number den-where is the molecular thermal conductivity, is the spe-
sity and temperature advected by a compressible turbulemific heat ratio, and is an external heat source. The density
fluid flow. For example, fluctuations of particle number den-p; and the velocityv of the fluid satisfy the continuity equa-
sity can be excited even without an external source due to thi&on

aT
S F@DTH (= DT(V-V)=7AT+Q, ()

Ips
*Present address: Department of Mechanical Engineering, Ben- W+V (pV)=0. @)
Gurion University of the Negev, P. O. Box 653, Beer-Sheva 84105,
Israel. The velocityv is determined by Navier-Stokes equation

1063-651X/97/58)/70435)/$10.00 55 7043 © 1997 The American Physical Society



7044 TOV ELPERIN, NATHAN KLEEORIN, AND IGOR ROGACHEVSKII 55

v calculus(Feynman-Kac formulawhich was applied in mag-
pt o (V- V)v=—VPi+piF,+F, (3)  netohydrodynamic$15,16] and passive scalar transport in
incompressible[15] and compressibleg[12,13 turbulent
where pF, is the viscous force, anfl is the stirring force. flows. o
F|u|d pressurepf , temperature‘l’f’ and densitypf (W|th For Slmp|ICIty the turbulent Ve|0C|ty f|e|d IS assumed to be
characteristic valueR,, To, andp,) satisfy the equation of ¢ correlated in a time random process. However, the results
state P=p;T;/m,, (m, is the mass of molecules of the also remain valid for the velocity field with a finite correla-
fluid). Consider turbulent flow with small Mach numbers. A tion time if the second momex varies slowly in compari-
solution of Eqs(l)_(B) can be Sought in the form of a power son with the correlation time of the turbulent fluid ﬂ(i%]
series of Mach number The use of the technique described in R&8] allows us
; to derive the equation for the structure function
O=(0(,)0(,y)):
¢=2 M*¢y .y @
k=0
b .
_ _ _ —=L®+27,(D?) P+, (11)
(see, e.g., Ref[14]), where nondimensional functions ot
d=(pi/po, T;/Ty P:/Pg, and vivy), the characteristic
value of the velocity iso=(Folo/po) Y% the characteristic
value of the stirring force i§, the energy containing scale
of turbulent motionsly, the Mach numbeM =vy\/y/cs,

where

L=—(Verr V)= Verr- V)y +[V(7- V)], +[V(7- V)],

and the sound speeti=(yTo/m,)*% Substitution of ex- P
pansion(4) into Eqgs.(1)—(3) and comparison the terms of +2(TUm()Un(Y)) 7 FYe
the same order iv1?* yields a set of equations mean
VP,=0, (5 ;7: Mpm= Pe_lépm+<7'upum>v Ver=V+(7u(V-u)),
vy = 27’Q<Q1(X)Q1(Y)>-

—r TV V)vi=— iV P,+Re {Av,;+{V(divvy)]
P1 v=V+u, whereV=(v) is the mean velocity and is the
turbulent component of the velocity,is the momentum re-
+—F, (6)  laxation time of the random velocity field, which depends
P1 on the scale of turbulent motion, ang, and 7, are the
apy momentum relaxation time of the external heat source and of
—+V-(p1v1)=0, (7)  the external flluctuations of pressuRy, respectively, and
at (D?) denotes averaging over external pressure fluctuations.
JT We consider the case MT=0, whereT is the mean tem-
(V- V)Ty=—(y—1)Ty(V-vy) + Pe AT, + Qy, perature field. Equatiofi1) for (V-u)=0 and(D?)=0 was
ot @ first derived by Kraichnafi17].

whereQ,=Qlo/(Tovo), F1=F/Fq, and£=1/3+ ¢o/v, &y lll. TEMPERATURE FLUCTUATIONS

is a bulk viscosity, Re-volo/v is the Reynolds number, and  consider temperature fluctuations in a homogeneous and
v is the kinematic viscosity. Note that E(p) appears in the  isotropic compressible turbulent fluid flow. In this case the
order of M ~2, whereas Eqs(6)—(8) appear in the order of cqrrelation function ruuy,) is given by

M®. Equations(5)—(8) yield

V'V1=i Pe_lAT1+Q1—T12|nP1 , (9) <Tum(x)un(x+r)>:nT[[F(r)+Fc(r)]5mn
YT1 dt

rF’ Fofn il
where Pevglo/ 7. Equations(8) and (9) yield the equation + =N Omn~— wz +rFe 12
for the fluid temperature,
(12)

dT, B
- T V)T =Pe AT +D()T1+Q1, (100 (for details sed13]), whereF’ =dF/dr, r=u?7,/3 is the
turbulent thermal conductivityy, is the characteristic veloc-
where D(t)=(y 1—1)(d/dt)InP;, and we changed nota- ity in the energy containing scalg of turbulent motions,

tions y Pe '—Pe ! andy 'Q;—Q;. To=1g/Ug, and F(0)=1—F_(0). The function F.(r) de-
In order to study the temperature fluctuations, we derivescribes the compressiblépotentia) component whereas
an equation for the structure functiof® (t,x)0(t,y)), F(r) corresponds to the vortical part of the turbulence. Equa-

where T,=T+®, T=(T,) is the mean temperature field, tion (11), by means of relatioii12), reduces to
is the fluctuating temperature field, and the angular brack-
ets denote statistical averaging over the ensemble of turbu- o 1

. ) i : —=——D"+2
lent fluid velocity. To this purpose we use the stochastic at  m(r)

+275(D?)®+1, (13)

1
F‘FX)(I),
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where
q)(r):m[:H_Bmpaq—l]—b’o/qm—l)ﬁm,
L 2 o F—(Ry r
m(r) Pe 3t (rFe)’). where By=q(q—1)(1—¢)(1—20)/6, the parameter
N=1/(g—1), J, is the Bessel function of the first kind,
mcr) ., _, Bo<0, ando> 3. For 0<% the derivative ¢®/dr), >0,
X(r)zT(ZFC_F ) and this solution cannot be a correlation function. In the

region 0<r=<r4 the exponeng=3 and the solution for the
and Pe= ylgug/ »>1 is the thermal Peclet number. We seekcorrelation function®(r) can be expressed in terms of the
a solution of Eq(13) with I =0 in the form Legendre functions (see Ref. [13]). In region |l
(Pe Y0 V<r<1),

P(t,r) r
d(t,r)= ex —J’ x(x)dx|, (149 1 1—4b2
r : ——~2B% Y, Ug(r)~————
m(r) mooF0 amr?
where #(t,r)=Y(r)exp(d't) and the unknown function
W(r) in a nondimensional form is determined by the equa- W(r)=Ar by Agrti2-h,
tion
(I)(F)IA2+A3I’72b,
1 ~
W\P”—[ZF+UO(r)]\P=0, (15  where
where b:w
2(1+o0q) ’
1 (2x .
Uo(r)=—— —+x2+x']|, andg>a(q—2). In region lll (r>1),
m(r)\ r
~ 1
I'=T—72(D?), distancer is measured in units df,, and mn 3 Uo(r)~0,

timet is measured in units of;.

We choose the following model of turbulence. =
Incompressible F(r) and compressibleF(r) compo- W(r)=Ascog V3[I[(r—r,)+e], ®(r)=w/r.
nents are given byF(r)=(1—¢)(1—r971), and F(r)
=g(1-r971), wherery<r<1, q is the exponent in the
spectrum of the functiokiru,u,), andry=Re YG P The
exponentp in the spectrum of the kinetic turbulent energy
differs from that of the function ru,u,) due to the scale
dependence of the momentum relaxation timef turbulent g2
velocity fieldu, andq=2p—1 (see Refs[10,11]). We con- I'=75(D?)— 3
sider the case of the Prandtl number=RY <1, which is
typical for gases.

Solution of Eq.(15) can be obtained using an asymptotic
analysis (see, e.g., Refs[10,13,15,1§. This analysis is
based on the separation of scales. In particular, the soluti
of the Schrdinger equation15) with a variable mass has

Matching functions®(r) and ®'(r) at the boundaries of
these regions yields the constartg and the dampindor
growth) rateI” of the temperature fluctuations. The latter is
given by

wherege«cotyp is the parameter of the continuous spectrum
of the Schrdinger equation(15). From the latter formula it
follows that, wherg— 0 andD— 0, the damping rate of the
Ofdmperature fluctuations— 0. Therefore the characteristic

) . time of the turbulent thermal conductivity can be much
different regions where the form of the potentidy(r),  |gnger than the turnover time of the turbulent eddies. The
massm(r) and, therefore, eigenfunctions(r) are different. | ayer implies that the compressibility of the turbulent fluid

Solutions in these different regions can be matched at theifo,y resuits in a fairly strong reduction of the turbulent ther-
boundaries. Note that the most important part of the solutiony, conductivity forD=0.

is localized in small scalesi.e., r<1). The results ob- The physics of this effect is as follows. The equation for

tained by this asymptotic analysis are presented belowyq internal energy =c,T; is given by

Distributions of mass m(r) are given by 1m(r)

=2[1+ B,Pa 9 ]/Pe, whereB,=(1—¢)(1+qo)/3, and du

the parameter of compressibility=¢/(1—¢). The solution G- TV uR VA (V). (16)
of Eq. (15) has several characteristic regions. In region |, i.e.,

for rd$r<Pefll(q_l)a the massn(r), the potentiallo(r), |t can be seen from Eq16) that the internal energy can
and the functionsk(r) and®(r) are given by increase(or decreasewhenV-u<0 (whenV-u>0). This

can result in a reduction of the rate of temperature leveling.
Such an effect can be interpreted as a reduction of the tur-
bulent thermal conductivity. The reason for the low turbulent

thermal conductivity is that the increase and decrease of the
W(r)=Ar23, (20| Bo|Pa?), internal energy in a small volume are separated in time and

1 2 28,
min~ pe Uo(r)~ z=g
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are not balanced in a compressible flow. Molecular thermascaling for the second moment of the temperature fluctua-
conductivity breaks the symmetry between the accumulatiotions, whereas the termr ~2° corresponds to the anomalous
and outflow of thermal energy, i.e., it breaks a reversibility inscaling.

time and does not allow a leveling of the thermal energy over Note that in incompressible turbulent flow only the
the consecutive time intervals. It can be seen from (&6) fourth-order correlation function of the passive scalar fluc-
that in incompressible turbulent flow, when the moleculartuations can have anomalous scalisge Refs[3]-[5]). On
thermal conductivityp=0, the internal energy is conserved, the other hand, we have found that in the compressible tur-
whereas in compressible turbulent fluid flow the internal enbulent flow with external pressure fluctuations even the sec-
ergy is not conserved due to the work performed by a presend moment can exhibit an anomalous scaling behavior. The
sure force. WhenD#0 the self-excitation(exponential reason for the anomalous scaling in the second moment is
growth) of temperature fluctuations occurs. In this case spathe compressibility, which results in a reduction of turbulent
tial distribution of the temperature fluctuations is intermittentthermal conductivity(i.e., existence of modes with damping
since the higher moments of the temperature field growate I'<<1). Note that in view of the quantum mechanics

faster than flow momentsee Ref[10]).

IV. ANOMALOUS SCALING OF TEMPERATURE
FLUCTUATIONS

analogy the appearance of the anomalous scaling in the sec-
ond moment of the temperature fluctuations is related to the
existence of the region with negative potentialfeg1. This
yields a conditiono> % for the anomalous scaling. On the
other hand, the solution for the correlation functidnexists

in scales Pe'@"Y<r<1 whenqg>o(q—2). This yields
conditions for the anomalous scalings of the temperature

Consider temperature fluctuations in the presence of afjg|q in compressible turbulent fluid flow: when<ig<2 the

external thermal sourcg(r) in Eq. (13). Substituting Eq.

parameter of compressibiliy< o<, and when 2q<3

(14) into Eq. (11) yields an equation for the unknown func- ine conditions forr are given byt<o<q/(q-2).

tion (t,r),
a1 %Y
2= m gz " YOy, 17

where f(r)=rl(r)exd [ox(X)dx]. Temperature fluctuations

can only be damped without an external sousze Sec. I\

V. CONCLUSIONS

It is demonstrated here that in a low-Mach-number com-
pressible turbulent fluid flow with external pressure fluctua-

Stationary temperature fluctuations require the presence ¢ibns the second-order correlation function of the tempera-
the nonzero external source. Determine the stationary soluure field can have anomalous scaling. The mechanism for

tion of Eq.(17) in scales Pe¥@~<r<1 (i.e., in region Il

the occurrence of anomalous scaling in the second moment is

see Sec. ). The external source in these scales is chosen agssociated with the compressibility of the fluid flow. Math-

follows: 1(r)=14(1—r%), where s>0, and for r>1,
[(r)=0. The general solution of E417) reads

0

W(r)=A W1 +AV,+ Jo G(r,H)f(&)d¢,

(18)

whereW¥ ;=r¥2"® and ¥,=r2"? gre solutions of Eq(17)
with =0, and Green functio®s(r,£) is given by

V(N Wo(§) —Wo(r)¥W,(8)
W1(HW(E) — VA W1(€)’

G(r,§)=m(§H(r—§)

andH(y) is a Heaviside function. Equatiofi8) yields the
formula for the second momedi(r),

Io g

T 2Bn(3-9)(3-q+2b)'
(19

D(r)=A,+Agr 20

where we neglect small termsr3~9%S, because <1. Note

that the termor3~9 in Eq. (19) corresponds to a normal

ematically the latter phenomenon is associated with the oc-
currence of the zero mode of the equation for the correlation
function of the temperature field. For the two-point correla-
tion function of the temperature field, this anomalous scaling
is caused by a strong depletion of the relaxation of the sec-
ond moment of the temperature field due to compressibility.
In view of the quantum mechanics analogy, the equation for
the second-order correlation function of the temperature field
can be considered a Schiinger equation, and the necessary
condition for anomalous scaling is the appearance of the
negative potential in the Schiimger equation at small scales
(r<ly). This yields the conditiorr> 3. When the exponent

in the spectrum of the functiofru,,u,,) is within the range

1< q=2 this condition is sufficient. On the other hand, when
2<g<3, the conditions for the anomalous scaling is given
by 3<o<q/(q-2).

The turbulent velocity field is assumed to be described by
a ¢ correlated in time random process. The derived equation
for the second-order correlation function is valid as long as
the momentum relaxation time of the velocity field is small
in comparison with the the characteristic time of variations
of the temperature fluctuations.

It is shown that in compressible turbulent flow the tem-
perature fluctuations can be excited only by the external fluc-
tuations of pressure. This mechanism of excitation of tem-
perature fluctuations can be validated experimentally. Thus,
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