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Temperature fluctuations and anomalous scaling in low-Mach-number
compressible turbulent flow
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Temperature fluctuations in a low-Mach-number compressible turbulent fluid flow are studied. It is demon-
strated that, due to compressibility and external pressure fluctuations, the anomalous scaling may occur in the
second moment of the temperature field. The cause of the anomalous behavior is a compressibility-induced
depletion of the turbulent diffusion of the second moment of the temperature. It is shown that temperature
fluctuations in compressible fluid flow~without thermal instability! can be excited only by external pressure
fluctuations. Experiments are suggested for the observation of the excitation of the temperature fluctuations.
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I. INTRODUCTION

Problems of intermittency and anomalous scalings
scalar and vector fields passively advected by a th
dimensional isotropic turbulent fluid flow have been the s
ject of numerous investigations in the last years~see, e.g.,
Refs.@1–11#!. The anomalous scaling means the deviation
the scaling exponents of the correlation function of a pass
scalar~vector! field from their values obtained by the dime
sional analysis. For incompressible turbulent flow, t
anomalous scalings for a scalar field can occur only fo
fourth-order correlation function, while for the vector fie
the anomalous scalings appear in the second moment.

For compressible (“•vÞ0) turbulent fluid flow with low
Mach numbers, the situation is quite different. In the pres
study it is shown that the compressibility of a turbulent flu
flow and external pressure fluctuations may result in the
pearance of anomalous scaling in the second moment o
temperature field.

Note that in incompressible turbulent fluid flow, equatio
for temperature field and the number density of noniner
particles ~or gaseous admixtures! coincide. On the other
hand, in compressible (“•vÞ0) turbulent fluid flows with
low Mach numbers, these equations are different. Indeed
equation for the number density has the form of a conse
tion law of the total number of particles. On the other ha
the equation for the temperature field does not have the f
of a conservation law.

This results in different behaviors of particle number de
sity and temperature advected by a compressible turbu
fluid flow. For example, fluctuations of particle number de
sity can be excited even without an external source due to
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compressibility of a turbulent fluid flow@10#. In the present
study we show that temperature fluctuations are excited
the compressible turbulent fluid flow only if there are exte
nal fluctuations of pressure.

Different behaviors can also be observed in the dynam
of the mean fields. In particular, compressibility results in t
formation of inhomogeneous spatial distributions of me
particle number density due to the effects of turbulent b
odiffusion and turbulent thermal diffusion@12,13#. Inhomo-
geneities of the mean temperature in compressible turbu
fluid flow can be formed only in the presence of extern
fluctuations of pressure~we now discuss the case when the
mal instability@14# is not excited!. Excitation of temperature
fluctuations and the formation of inhomogeneities of t
mean temperature in a compressible turbulent fluid flow
caused by the work performed by external pressure. On
other hand, excitation of fluctuations and formation of inh
mogeneities of the mean number density of particles
vected by a compressible turbulent flow do not change
thermal energy of the system.

II. GOVERNING EQUATIONS

Evolution of the temperature fieldTf(t,r ) in a compress-
ible turbulent fluid flow is determined by the equation

]Tf

]t
1~v•“ !Tf1~g21!Tf~“•v!5hDTf1Q, ~1!

whereh is the molecular thermal conductivity,g is the spe-
cific heat ratio, andQ is an external heat source. The dens
r f and the velocityv of the fluid satisfy the continuity equa
tion

]r f

]t
1“•~r fv!50. ~2!

The velocityv is determined by Navier-Stokes equation

n-
,
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r f

]v

]t
1~v•“ !v52“Pf1r fFn1F, ~3!

whererFn is the viscous force, andF is the stirring force.
Fluid pressurePf , temperatureTf , and densityr f ~with
characteristic valuesP0, T0, andr0) satisfy the equation o
statePf5r fTf /mm , (mm is the mass of molecules of th
fluid!. Consider turbulent flow with small Mach numbers.
solution of Eqs.~1!–~3! can be sought in the form of a powe
series of Mach number

f5 (
k50

k5`

M2kfk11 ~4!

~see, e.g., Ref.@14#!, where nondimensional function
f5(r f /r0, Tf /T0, Pf /P0, and v/v0), the characteristic
value of the velocity isv05(F0l 0 /r0)

1/2, the characteristic
value of the stirring force isF0 , the energy containing scal
of turbulent motionsl 0 , the Mach numberM5v0Ag/cs ,
and the sound speedcs5(gT0 /mm)

1/2. Substitution of ex-
pansion~4! into Eqs.~1!–~3! and comparison the terms o
the same order inM2k yields a set of equations

“P150, ~5!

]v1
]t

1~v1•“ !v152
1

r1
“P21Re21@Dv11z“~div v1!#

1
1

r1
F1 , ~6!

]r1
]t

1“•~r1v1!50, ~7!

]T1
]t

1~v1•“ !T152~g21!T1~“•v1!1Pe21DT11Q1 ,

~8!

whereQ15Ql0 /(T0v0), F15F/F0 , andz51/31zb /n, zb
is a bulk viscosity, Re5v0l 0 /n is the Reynolds number, an
n is the kinematic viscosity. Note that Eq.~5! appears in the
order ofM22, whereas Eqs.~6!–~8! appear in the order o
M0. Equations~5!–~8! yield

“•v15
1

gT1
SPe21DT11Q12T1

d

dt
lnP1D , ~9!

where Pe5v0l 0 /h. Equations~8! and~9! yield the equation
for the fluid temperature,

]T1
]t

1~v1•“ !T15Pe21DT11D~ t !T11Q1 , ~10!

where D(t)5(g2121)(d/dt)lnP1, and we changed nota
tionsg21Pe21→Pe21 andg21Q1→Q1.

In order to study the temperature fluctuations, we der
an equation for the structure function̂Q(t,x)Q(t,y)&,
where T15T1Q, T5^T1& is the mean temperature field
Q is the fluctuating temperature field, and the angular bra
ets denote statistical averaging over the ensemble of tu
lent fluid velocity. To this purpose we use the stochas
e

k-
u-
c

calculus~Feynman-Kac formula!, which was applied in mag-
netohydrodynamics@15,16# and passive scalar transport
incompressible @15# and compressible@12,13# turbulent
flows.

For simplicity the turbulent velocity field is assumed to
d correlated in a time random process. However, the res
also remain valid for the velocity field with a finite correla
tion time if the second momentF varies slowly in compari-
son with the correlation time of the turbulent fluid flow@15#.

The use of the technique described in Ref.@13# allows us
to derive the equation for the structure functio
F5^Q(t,x)Q(t,y)&:

]F

]t
5L̂F12tD^D2&F1I , ~11!

where

L̂52~Veff•“ !x2~Veff•“ !y1@“~ ĥ•“ !#x1@“~ ĥ•“ !#y

12^tum~x!un~y!&
]2

]xm]yn
,

ĥ5hpm5Pe21dpm1^tupum&, Veff5V1^tu~“•u!&,

I52tQ^Q1~x!Q1~y!&.

v5V1u, whereV5^v& is the mean velocity andu is the
turbulent component of the velocity,t is the momentum re-
laxation time of the random velocity fieldu, which depends
on the scale of turbulent motion, andtQ and tD are the
momentum relaxation time of the external heat source an
the external flluctuations of pressureP1 , respectively, and
^D2& denotes averaging over external pressure fluctuatio
We consider the case of“T50, whereT is the mean tem-
perature field. Equation~11! for (“•u)50 and^D2&50 was
first derived by Kraichnan@17#.

III. TEMPERATURE FLUCTUATIONS

Consider temperature fluctuations in a homogeneous
isotropic compressible turbulent fluid flow. In this case t
correlation function̂ tumun& is given by

^tum~x!un~x1r !&5hTF @F~r !1Fc~r !#dmn

1
rF 8

2 S dmn2
rmr n
r 2 D1rF c8

rmr n
r 2 G

~12!

~for details see@13#!, whereF85dF/dr, hT5u0
2t0 /3 is the

turbulent thermal conductivity,u0 is the characteristic veloc
ity in the energy containing scalel 0 of turbulent motions,
t05 l 0 /u0, and F(0)512Fc(0). The function Fc(r ) de-
scribes the compressible~potential! component whereas
F(r ) corresponds to the vortical part of the turbulence. Eq
tion ~11!, by means of relation~12!, reduces to

]F

]t
5

1

m~r !FF912S 1r 1x DF8G12tD^D2&F1I , ~13!
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where

1

m~r !
5

2

Pe
1
2

3
@12F2~rF c!8#,

x~r !5
m~r !

3
~2Fc82F8!,

and Pe5g l 0u0 /h@1 is the thermal Peclet number. We se
a solution of Eq.~13! with I50 in the form

F~ t,r !5
c~ t,r !

r
expF2E

0

r

x~x!dxG , ~14!

where c(t,r )5C(r )exp(2Gt) and the unknown function
C(r ) in a nondimensional form is determined by the equ
tion

1

m~r !
C92@2G̃1U0~r !#C50, ~15!

where

U0~r !5
1

m~r !S 2x

r
1x21x8D ,

G̃5G2t0
2^D2&, distancer is measured in units ofl 0, and

time t is measured in units oft0.
We choose the following model of turbulenc

Incompressible F(r ) and compressibleFc(r ) compo-
nents are given byF(r )5(12«)(12r q21), and Fc(r )
5«~12r q21!, where r d,r!1, q is the exponent in the
spectrum of the function̂tumun&, andr d5Re21/(32p). The
exponentp in the spectrum of the kinetic turbulent energ
differs from that of the function̂ tumun& due to the scale
dependence of the momentum relaxation timet of turbulent
velocity fieldu, andq52p21 ~see Refs.@10,11#!. We con-
sider the case of the Prandtl number Pr5n/h<1, which is
typical for gases.

Solution of Eq.~15! can be obtained using an asympto
analysis ~see, e.g., Refs.@10,13,15,16#!. This analysis is
based on the separation of scales. In particular, the solu
of the Schro¨dinger equation~15! with a variable mass ha
different regions where the form of the potentialU0(r ),
massm(r ) and, therefore, eigenfunctionsC(r ) are different.
Solutions in these different regions can be matched at t
boundaries. Note that the most important part of the solu
is localized in small scales~i.e., r!1). The results ob-
tained by this asymptotic analysis are presented bel
Distributions of mass m(r ) are given by 1/m(r )
52@11bmPer

q21#/Pe, wherebm5(12«)(11qs)/3, and
the parameter of compressibilitys5«/(12«). The solution
of Eq. ~15! has several characteristic regions. In region I, i
for r d<r!Pe21/(q21), the massm(r ), the potentialU0(r ),
and the functionsC(r ) andF(r ) are given by

1

m~r !
;

2

Pe
, U0~r !;

2b0

r 32q ,

C~r !5A1r
1/2Jl~2lAub0uPer 1/2l!,
-

on

ir
n

.

.,

F~r !5
C~r !

r
@11bmPer

q21#2b0 /q~q21!bm,

where b05q(q21)(12«)(122s)/6, the parameter
l51/(q21), Jl is the Bessel function of the first kind
b0,0, ands. 1

2. For s, 1
2 the derivative (]F/]r ) r→0.0,

and this solution cannot be a correlation function. In t
region 0,r<r d the exponentq53 and the solution for the
correlation functionF(r ) can be expressed in terms of th
Legendre functions ~see Ref. @13#!. In region II
(Pe21/(q21)!r!1),

1

m~r !
;2bmr

q21, U0~r !;2
124b2

4mr2
,

C~r !5A2r
1/21b1A3r

1/22b,

F~r !5A21A3r
22b,

where

b5
q2s~q22!

2~11sq!
,

andq.s(q22). In region III (r@1),

1

m~r !
;
2

3
, U0~r !;0,

C~r !5A4cos@A3uG̃ u~r2r * !1w#, F~r !5C/r .

Matching functionsF(r ) and F8(r ) at the boundaries o
these regions yields the constantsAk and the damping~or
growth! rateG of the temperature fluctuations. The latter
given by

G5t0
2^D2&2

g2

3
,

whereg}cotw is the parameter of the continuous spectru
of the Schro¨dinger equation~15!. From the latter formula it
follows that, wheng→0 andD→0, the damping rate of the
temperature fluctuationsG→0. Therefore the characteristi
time of the turbulent thermal conductivity can be mu
longer than the turnover time of the turbulent eddies. T
latter implies that the compressibility of the turbulent flu
flow results in a fairly strong reduction of the turbulent the
mal conductivity forD50.

The physics of this effect is as follows. The equation f
the internal energyU5cVTf is given by

dU

dt
52Tf“•u1“•~h“Tf !. ~16!

It can be seen from Eq.~16! that the internal energyU can
increase~or decrease! when“•u,0 ~when“•u.0). This
can result in a reduction of the rate of temperature leveli
Such an effect can be interpreted as a reduction of the
bulent thermal conductivity. The reason for the low turbule
thermal conductivity is that the increase and decrease of
internal energy in a small volume are separated in time
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are not balanced in a compressible flow. Molecular therm
conductivity breaks the symmetry between the accumula
and outflow of thermal energy, i.e., it breaks a reversibility
time and does not allow a leveling of the thermal energy o
the consecutive time intervals. It can be seen from Eq.~16!
that in incompressible turbulent flow, when the molecu
thermal conductivityh50, the internal energy is conserve
whereas in compressible turbulent fluid flow the internal
ergy is not conserved due to the work performed by a p
sure force. WhenDÞ0 the self-excitation~exponential
growth! of temperature fluctuations occurs. In this case s
tial distribution of the temperature fluctuations is intermitte
since the higher moments of the temperature field gr
faster than flow moments~see Ref.@10#!.

IV. ANOMALOUS SCALING OF TEMPERATURE
FLUCTUATIONS

Consider temperature fluctuations in the presence o
external thermal sourceI (r ) in Eq. ~13!. Substituting Eq.
~14! into Eq. ~11! yields an equation for the unknown func
tion c(t,r ),

]c

]t
5

1

m

]2c

]r 2
2U~r !c1 f ~r !, ~17!

where f (r )5rI (r )exp@*0
rx(x)dx#. Temperature fluctuation

can only be damped without an external source~see Sec. III!.
Stationary temperature fluctuations require the presenc
the nonzero external source. Determine the stationary s
tion of Eq.~17! in scales Pe21/(q21)!r<1 ~i.e., in region II,
see Sec. III!. The external source in these scales is chose
follows: I (r )5I 0(12r s), where s.0, and for r.1,
I (r )50. The general solution of Eq.~17! reads

c~r !5A2C11A3C21E
0

`

G~r ,j! f ~j!dj, ~18!

whereC15r 1/21b andC25r 1/22b are solutions of Eq.~17!
with I50, and Green functionG(r ,j) is given by

G~r ,j!5m~j!H~r2j!
C1~r !C2~j!2C2~r !C1~j!

C1~j!C28~j!2C2~j!C18~j!
,

andH(y) is a Heaviside function. Equation~18! yields the
formula for the second momentF(r ),

F~r !5A21A3r
22b2

I 0
2bm~32q!~32q12b!

r 32q,

~19!

where we neglect small terms}r 32q1s, becauser!1. Note
that the term}r 32q in Eq. ~19! corresponds to a norma
al
n

r

r

-
s-

-
t
w

n

of
lu-

as

scaling for the second moment of the temperature fluct
tions, whereas the term}r22b corresponds to the anomalou
scaling.

Note that in incompressible turbulent flow only th
fourth-order correlation function of the passive scalar flu
tuations can have anomalous scaling~see Refs.@3#–@5#!. On
the other hand, we have found that in the compressible
bulent flow with external pressure fluctuations even the s
ond moment can exhibit an anomalous scaling behavior.
reason for the anomalous scaling in the second momen
the compressibility, which results in a reduction of turbule
thermal conductivity~i.e., existence of modes with dampin
rate G!1). Note that in view of the quantum mechani
analogy the appearance of the anomalous scaling in the
ond moment of the temperature fluctuations is related to
existence of the region with negative potential forr!1. This
yields a conditions. 1

2 for the anomalous scaling. On th
other hand, the solution for the correlation functionF exists
in scales Pe21/(q21)!r<1 whenq.s(q22). This yields
conditions for the anomalous scalings of the temperat
field in compressible turbulent fluid flow: when 1,q<2 the
parameter of compressibility12 ,s,`, and when 2,q,3
the conditions fors are given by12,s,q/(q22).

V. CONCLUSIONS

It is demonstrated here that in a low-Mach-number co
pressible turbulent fluid flow with external pressure fluctu
tions the second-order correlation function of the tempe
ture field can have anomalous scaling. The mechanism
the occurrence of anomalous scaling in the second mome
associated with the compressibility of the fluid flow. Mat
ematically the latter phenomenon is associated with the
currence of the zero mode of the equation for the correla
function of the temperature field. For the two-point corre
tion function of the temperature field, this anomalous scal
is caused by a strong depletion of the relaxation of the s
ond moment of the temperature field due to compressibil
In view of the quantum mechanics analogy, the equation
the second-order correlation function of the temperature fi
can be considered a Schro¨dinger equation, and the necessa
condition for anomalous scaling is the appearance of
negative potential in the Schro¨dinger equation at small scale
(r! l 0). This yields the conditions. 1

2. When the exponen
in the spectrum of the function̂tumun& is within the range
1,q<2 this condition is sufficient. On the other hand, wh
2,q,3, the conditions for the anomalous scaling is giv
by 1

2,s,q/(q22).
The turbulent velocity field is assumed to be described

a d correlated in time random process. The derived equa
for the second-order correlation function is valid as long
the momentum relaxation time of the velocity field is sm
in comparison with the the characteristic time of variatio
of the temperature fluctuations.

It is shown that in compressible turbulent flow the tem
perature fluctuations can be excited only by the external fl
tuations of pressure. This mechanism of excitation of te
perature fluctuations can be validated experimentally. Th
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e.g., it is conceivable to suggest installing a sound gener
with a white-noise power spectrum in the wind tunnel us
for the investigation of temperature fluctuations~see, e.g.,
Refs. @18,19#!. Then the observed temperature correlat
function will change strongly in comparison to a case wi
out external pressure fluctuations.
,
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